
What characteristics define a good rechargeable battery? 
Although properties such as rate capability, cost, cycle 
life and temperature tolerance must be taken into con-
sideration in any evaluation of a rechargeable battery1,2, 
it is the improvement in energy density that has primar-
ily driven the overall technological progress over the past 
150 years — from lead–acid cells in the 1850s, nickel–
cadmium cells in the 1890s and nickel metal hydride 
cells in the 1960s to, finally, lithium-ion batteries (LIBs) 
in the present day.

In the current era of LIBs, there is an ever-growing 
demand for even higher energy densities to power mobile 
IT devices with increased power consumption and to 
extend the driving range of electric vehicles. The growth 
of the global electric vehicle market has been slower than 
initially predicted about 5 years ago3, which reflects the 
challenge that the battery industry faces: customers react 
very sensitively to the driving range (and thus the energy 
density) and price of electric vehicles. Because the energy 
density of a rechargeable battery is determined mainly by 
the specific capacities and operating voltages of the anode 
and the cathode, active materials have been the main 
focus of research in recent years. Other cell components, 
including separators, binders, outer cases and, to some 
extent, the major components of the electrolyte solution 
(that is, solvent and salt), have little room for further 
improvement. In other words, a dramatic increase in the 
energy density requires new redox chemistries between 
charge-carrier ions and host materials beyond the con-
ventional ‘intercalation’ mechanisms4. Intercalation-
based materials have a relatively small number of 
crystallographic sites for storing charge-carrier ions, 

leading to limited energy densities. For this reason, the 
electrodes that operate on the basis of distinct solid-state 
reactions, such as alloying and conversion, or that use 
gas-phase reactants have encountered growing interest 
owing to the likelihood that they will surpass the energy 
densities of intercalation-based electrodes.

New chemistries for charge-carrier ion storage serve 
as the basis for ‘beyond intercalation’ or so‑called post-
LIBs5–7. The systems governed by these new chemistries 
offer higher theoretical energy densities, and this ben-
efit is usually translated to, at least, the initial cycles in 
experimental testing. It is becoming increasingly evident 
that the short lifetime is a serious problem of post-LIB 
systems. Indeed, the main technological challenge asso-
ciated with these systems is overcoming their inferior 
reversibility. The main factors responsible for the low 
reversibility are instabilities during the phase transition 
of active materials and/or uncontrolled reactions at the 
electrode/electrolyte interface8; this implies that the 
electrode structures and electrolyte solutions should be 
developed and optimized as integrated systems to enable 
the realization of post-LIBs.

In this Review, we discuss a wide range of promising 
post-LIBs, focusing on their advantages and remaining 
challenges with respect to their governing chemistries. 
To construct an organized portfolio, we classify them 
into two distinct categories: near-term and long-term 
technologies. Near-term technologies have already been 
partially introduced in commercial products or are 
expected to mature within the next 5 years, and long-
term technologies require at least 5 more years of fun-
damental research to become commercially viable. One 
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Abstract | Energy density is the main property of rechargeable batteries that has driven the entire 
technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously 
competitive battery types (for example, lead–acid and nickel metal hydride) but still require 
extensive further improvement to, in particular, extend the operation hours of mobile IT devices 
and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a 
wide range of post-LIB materials and systems that could have a pivotal role in meeting such 
demands. We divide battery systems into two categories: near-term and long-term technologies. 
To provide a realistic and balanced perspective, we describe the operating principles and 
remaining issues of each post-LIB technology, and also evaluate these materials under 
commercial cell configurations.
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of the main purposes of this Review is to draw a realistic 
and critical picture of the extent to which the energy 
density in commercial cells can be improved through 
the use of post-LIBs compared with existing LIBs. This 
analysis is important because the energy-density evalu-
ations presented in many previous literature sources are 
based on gravimetric capacities of active materials that 
exclude other dead-volume and dead-weight compo-
nents, and therefore overestimate the energy densities 
of post-LIBs9. Rather than detail all advancements for 
each class of post-LIB, we focus on crucial technological 
issues that may have a strong impact on the practical 
energy densities of these systems.

Commercial cell configurations
Before addressing each of the various post-LIBs, we first 
discuss the different structures of commercial cells. In 
large-scale applications (for example, in electric vehicles), 
a certain number of cells are packed into a module. The 
design of the modules depends largely on the size and 
shape of the products, as well as their interconnecting  
circuits, safety and temperature control aspects. We 
restrict the scope of this Review to the material properties 
and behaviour at the single-cell level.

Current commercial cells adopt three cell types: 
cylindrical, prismatic and pouch (FIG. 1). Cylindrical cells 
in most products (including those used for Tesla Motors’ 
vehicles) follow a standard model in terms of size — 
namely, the 18650 cell. Typical 18650 cells in commer-
cial LIB products hold volumetric energy densities of 
600–650 Wh l−1, which are ~20% higher than those of 
their prismatic and pouch counterparts10,11 because a 
stacked cell assembly in a cylindrical cell is wound with 
a higher tension. The energy density of battery systems 
can be compared on a gravimetric or volumetric basis. 
It seems that for many practical systems, the volumetric 
aspect is more important, because most battery packs 
are designed according to the available volume. Despite 
the higher energy densities of cylindrical cells, prismatic 
and pouch cells are adopted for a wide range of applica-
tions owing to their smaller dead volumes on the module 
level and higher degrees of design freedom; in contrast 
to cylindrical cells, the size of prismatic and pouch cells 
is easily customized for the final product. Hence, we took 

the pouch cell as a common platform to examine the 
volumetric energy densities of selected battery systems 
and used the specific volumetric energy densities as the 
basis for comparison.

As depicted in FIG. 1c, fixed dimensions of 300 mm 
(length) × 100 mm (width) × 10 mm (thickness) are 
used by benchmarking a product of one battery man-
ufacturer (SK Innovation). Inside this prototype cell, 
n anode–separator–cathode stacks are incorporated 
to occupy the given pouch thickness, with both sides 
of each current collector, except the outermost stacks, 
coated with electrode films. In this commercial pouch 
setting, a conventional LiCoO2–graphite cell delivers 
491 Wh l−1 (Supplementary information S1 (table)), 
which is in the range of many current commercial prod-
ucts. We evaluated other post-LIBs under an identical 
cell configuration.

Near-term technologies
The active materials in this category of post-LIBs have 
been developed to a level that enables their partial use in 
the electrodes of current commercial products. Research 
on these active materials is ongoing to increase their con-
tent in the electrodes of the corresponding post-LIB cells.

Silicon anodes. Natural and artificial graphite have long 
been the main anode-active materials in LIBs12,13 and 
serve as a universal reference in evaluating new mate-
rials. Among many higher-specific-capacity alternatives 
to graphite that are under investigation, Si is one of the 
most promising anode materials because of its superior 
theoretical capacity (>4,000 mAh g−1) and attractive oper-
ating voltage (~0.3 V versus Li/Li+)14–17. Since the early 
work conducted at Argonne National Laboratory18 and 
General Motors19,20 in the 1970s, considerable research 
efforts have focused on overcoming the key failure 
modes in the cyclability that originate from the huge 
volume change of Si upon lithiation–delithiation (FIG. 2a). 
Progress in this area has been made using smart electrode 
structures21–26 and binder designs27–37, whereby the issues 
of pulverization of the active material and peeling-off of 
the electrode active mass can be simultaneously resolved. 
Another critical problem of Si electrodes is the forma-
tion of unstable passivation layers. In practice, when the 
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electrode volume fluctuates drastically, it is very difficult 
to develop a stable solid electrolyte interphase (SEI), 
which serves as a protecting film on the electrode sur-
face. This interfacial issue can be largely resolved by a 
judicious selection of electrolyte solution38–41.

From the viewpoint of electrode structure, compos-
ites21–26 that buffer the volume expansion of Si through 
conductive nanoporous structures are remarkable; they 
demonstrate greatly enhanced cyclability compared 

with those simply based on bare Si nanomaterials. These 
composite components include porous carbon21,24,25, 
graphene26, tubular templates23 and other semicon-
ducting materials22 with similar morphologies (FIG. 2b). 
Despite the significantly improved cyclability based 
on these structural designs, the industry has instead 
adopted the silicon monoxide phase (SiOx, x ≈ 1) as 
the first Si‑based commercial anode material (FIG. 2c), 
because these materials can be produced in massive 
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quantities in both gas-phase42,43 and solution-based44 
processes, and are also available at a reasonable price 
(approximately US$100 per kg versus $10–20 per kg 
of graphite) and with reliable quality. However, SiOx is 
used in a blended form with graphite, but its content 
is typically less than 5 wt%, which reflects the infancy 
of Si anode technology. The main challenge associated 
with SiOx is its poor initial Coulombic efficiency (ICE), 
which reaches only 50–60%45 without a carbon surface 
coating. This low efficiency leads to an excessive loading 
of the cathode material and, therefore, to a sacrifice in 
the energy density of the entire cell. A more fundamental 
difficulty in designing an active Si structure is simul-
taneously attaining long-term cyclability and high ICE, 
because these two attributes require contradictory mate-
rial features: the buffering matrices and porous struc-
tures implemented to accommodate the volume change 
of Si and thus achieve long-term cyclability are detri-
mental to the ICE because of increased Li‑ion trapping 
and interfacial reactions. In this context, recent attempts 
to prelithiate Si‑containing anodes using solution46 or 
electrochemical processes47,48 (FIG. 2d) could become very 
useful. Such approaches orthogonally address the ICE 
problem without impairing the long-term cyclability.

Polymeric binders have proved to be effective in 
enhancing the cyclability of Si electrodes. Conventional 
polyvinylidene difluoride (PVDF) has been replaced by 
new binders (FIG. 2e), such as polymers with crosslinked 
chains27,28, self-healing polymeric matrices29,30, carbohy-
drate-based polymers31–35 and electronically conducting 
polymers36,37. These new binders are effective in main-
taining the electrode structure during the repeated vol-
ume change of Si, mainly via 3D interchain interactions. 
The remaining objectives in binder research are: first, 
to preserve the new binder functions at a lower binder 
content comparable to the present industrial conditions 
(<5 wt%); second, to develop hybrid polymers that bind 
Si and graphite (or other carbonaceous materials) simul-
taneously; and, last, to optimize binder functionalities in 
such a way that the binding affinity with Si is increased, 
but Li-ion trapping is minimized for high Coulombic 
efficiency. In particular, supramolecular chemistry that 
can incorporate non-covalent interactions (such as 
hydrogen bonding, ion–dipole and π–π interactions) is 
expected to be a useful tool in tuning network properties 
between polymers and active particles28.

Using the pouch cell configuration in FIG. 1c and 
pairing it with LiNi0.8Co0.1Mn0.1O2 electrodes as repre-
sentative high-capacity cathodes (see the next section), 
a 50% replacement of graphite with a commercial SiOx 
is predicted to increase the energy density by 7.6%, from 
513 Wh l−1 (Supplementary information S2 (table)) to 
552 Wh l−1 (Supplementary information S3 (table)), 
when 110% swelling (the average observed49,50 value 
between graphite and SiOx) is postulated for the com-
posite anodes. Prelithiation of SiOx may increase the 
energy density further to 628 Wh l−1 (Supplementary 
information S4 (table)) through lowering the cathode 
loading by balancing the capacities of both electrodes. If 
only 50% swelling is assumed, the energy density of cells 
with prelithiated SiOx-based anodes can increase further 

to 710 Wh l−1 (Supplementary information S4 (table)). 
These comparative energy-density values demonstrate 
that achieving high ICE and suppressing electrode swell-
ing are very important for utilizing the high intrinsic 
capacity of Si to attain high volumetric energy density.

Layered nickel-rich and lithium- and manganese-rich 
cathode materials. The next emerging cathode materi-
als in the field of LIBs are Ni‑rich and Li- and Mn‑rich 
layered materials, the origins of which can be traced 
to the early works by the Dahn51 and Thackeray52 
groups, respectively. They are the successive gener-
ation of their long-standing layered counterparts, 
LiCoO2 (~145 mAh  g−1) and LiNi1/3Co1/3Mn1/3O2 

(~153 mAh g−1)53. In fact, Ni‑rich materials are already 
partially included in commercial products54, with 
LiNi0.8Co0.15Al0.05O2 being a representative example55. 
In addition, on the basis that layered transition metal 
(TM) oxides with Mn have advantages in terms of safety 
and rate capability, there have been attempts56 to develop 
Ni‑rich LiNixMnyCozO2 (x + y + z = 1) layered cathode 
materials in which x > 0.6. All of these layered materials 
have a common host structure in which Li and TM slabs 
are alternately repeated in the overall cubic close-packed 
(ccp) frame of O atoms, and Li and TM ions are posi-
tioned at the octahedral sites in the corresponding slabs 
(FIG. 3a). In addition to this underlying host structure, in 
the Ni‑rich and Li- and Mn‑rich phases, there is well-
known Li–TM mixing and secondary phases scattered 
throughout each particle, respectively (FIG. 3a, right). 
Compared with their conventional layered analogues, 
the Ni‑rich phases raise the specific capacity owing to 
their electronic structures, as with LiNiO2; in contrast to 
LiCoO2, the eg energy band of LiNiO2 does not overlap 
with the O2p band57, allowing a higher degree of charg-
ing without perturbing the O2 framework. In the case 
of Li- and Mn‑rich phases, the increased capacity orig-
inates from the presence of Li2MnO3 (in addition to an 
active LiMO2 layered phase), which is activated in the 
first charge during Li extraction and O2 evolution58. This 
activation, achieved at a potential of >4.7 V, can provide 
Li- and Mn‑rich layered cathode materials with a gravi-
metric capacity higher than 250 mAh g−1. The represent-
ative voltage profiles in the first cycle for these two types 
of material59,60 are displayed in FIG. 3b.

Despite their enhanced capacity, these two emerging 
layered materials often encounter capacity fading dur-
ing cycling, arising mainly from common detrimental 
structural and surface changes. Upon Li‑ion extraction 
during charging, both layered materials tend to trans-
form to the more thermodynamically stable spinel-like 
phases56. Crystallographically, this spontaneous transi-
tion is initiated by the preferential migration of TMs 
to the octahedral sites in the Li slabs (also known as 
Li–TM mixing; FIG. 3c) and results in a drop in both the 
voltage profile61 (FIG. 3d) and the capacity during dis-
charge. The structural instability is also caused by an 
unstable interface; TMs from the Ni‑rich and Li- and 
Mn‑rich phases are known to dissolve57, generating irre-
versible and inactive interfacial compounds. In addition, 
the surface interactions of these nucleophilic and basic 
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cathode materials with solution species (acidic moieties 
such as HF, PF5 and electrophilic alkyl carbonates) form 
resistive surface films that increase the electrode imped-
ance62. Some strategies, including TM doping63–65, sur-
face coating with AlF3 (REF. 66), Al2O3 (REFS 67,68), AlPO4 
(REFS 69,70), carbon71 and TiO2 (REFS 72,73), implementa-
tion of spinel phases near the surface region74,75 and the 
incorporation of concentration gradient structures76, 
have been reported to be effective in addressing the 
failure mechanisms. Nonetheless, research is expected 
to continue in the pursuit of more robust solutions, 
but progress may not be easy because performance 
fading originates from thermodynamically favoured 
phase-transition processes. Between these two classes 
of layered materials, realistic solutions based on cost-ef-
fective approaches are less available for Li- and Mn‑rich 
layered materials, leading to relatively slower progress 
towards commercialization.

With graphite used as an anode-active mate-
rial, the replacement of traditional LiCoO2 with 
LiNi0.8Co0.1Mn0.1O2 or Li1.19Mn0.54Ni0.13Co0.12Ru0.01O2 
results in a moderate increase in energy density from 
491 Wh  l−1 to 513 and 524 Wh  l−1 (4.4% and 6.7% 
increases), respectively (Supplementary informa-
tion S1,S2 (tables); Supplementary information S5 
(table)). The increase in volumetric energy density is 
smaller than expected based on the higher gravimetric 
capacity of these materials owing to the lower density 

(3.0–3.3 g cm−3 versus 4.0 g cm−3 for LiCoO2) of active 
material in the fabricated electrodes. This result guides 
us towards another useful research direction for Ni‑rich 
and Li- and Mn‑rich cathode materials: increasing the 
density of the active powder and the electrode film. In 
addition, the volumetric energy density increases to 552 
and 661 Wh l−1, respectively, when 50 wt% of graphite is 
replaced by SiOx (Supplementary information S1–S3,S5 
(tables); Supplementary information S6 (table)).

Long-term technologies
The active materials in this category of post-LIBs have 
the potential to increase the energy density more sig-
nificantly. However, their reversible operation, which is 
essential for long-term cyclability, is not fully guaranteed 
and requires fundamental research to understand the 
properties and behaviour of the electrodes and electrode/
electrolyte interfaces.

The lithium-metal anode. Since Whittingham et al.77 
demonstrated the Li–TiS2 system, Li metal has been 
considered as one of the most ideal anodes in LIBs 
owing to its high theoretical capacity (3,860 mAh g−1) 
and low redox potential78,79. However, severe surface 
dendrite formation causes poor interfacial stability 
and safety issues. More than 15 years ago, it was con-
cluded that Li metal was not a suitable anode mate-
rial in rechargeable batteries80. Nevertheless, in recent 
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years, the community has seen a renaissance in research 
and development efforts aimed at using metallic Li in 
high-energy-density rechargeable batteries. Dendrite 
growth is very difficult to prevent because it can be 
initiated from nanoscale roughness on the surface; 
incoming Li ions are preferentially deposited at rela-
tively sharp tips and protruding morphologies of the 
innate Li-metal surface (FIG. 4a). Various coating mate-
rials, including glasses81,82 and composites83 (approach 
1 in FIG. 4b) were reported to suppress dendrite growth 
to a great extent by exerting pressure against the surface 
and blocking the space that is open for further dendrite 
growth. As a distinct coating scheme, thin carbon84 and 
graphene layers85 that separate SEI layers from den-
drite growth have recently been reported to improve 
charge–discharge efficiency by restricting electrolyte 
decomposition above the coating layers (approach 2 in 
FIG. 4b). Other approaches86,87 have also been developed 
to make Li‑ion flux more uniform over the Li-metal 
surface (approach 3 in FIG. 4b), because uniform flux can 
prevent local increases in Li-ion concentration, which 
is essential for dendrite growth. Coating the separators 
with materials that possess good wetting capability (by 
the electrolyte solutions) is a well-known strategy in this 
direction86. Electrolyte solutions containing functional 
additives have also proved to be effective. In addition to 
small-molecule-based additives88–90, additives that func-
tion on the basis of electrostatic interactions with Li ions 
were recently discovered91; Cs+ ions at low concentra-
tions (approach 4 in FIG. 4b) remain positively charged 
and repel incoming Li ions from sharp tips, which 
causes the surface morphology to be more rounded. 
Finally, strategies (approach 5 in FIG. 4b) that incor-
porate 3D patterning92 or use Li-metal powder93 are 
also valid, because the increased effective surface area 
by the 3D morphology dissipates the electron density  
at the given areal current density.

To evaluate the volumetric energy density, cases 
with and without the swelling of the Li-metal anode 
were considered (Supplementary information S7 
(table); Supplementary information S8 (table)). 
The separator thickness was also varied to include 

reasonable amounts of extra electrolyte solution, 
because it is essential to compensate for the con-
sumption of the electrolyte solution at the Li-metal 
interface. When 100% swelling is assumed, the energy 
density ranges from 650 to 764 Wh  l−1 upon pair-
ing with LiNi0.8Co0.1Mn0.1O2 (Supplementary infor-
mation S7 (table)), corresponding to a 32.0−55.6% 
improvement compared with the LiCoO2–graphite 
reference. These values rise further to 743–890 Wh l−1 
(Supplementary information S8 (table)) if no swell-
ing is assumed for the Li-metal anode, which demon-
strates that stabilizing the Li-metal anode interface 
can considerably improve the energy density. Despite 
these promising energy densities, the commercial suc-
cess of Li-metal anodes is still not guaranteed because 
none of the existing solutions meets the commercial 
standards in terms of electrochemical performance  
and large-scale processing.

Lithium–sulfur batteries. Sulfur is one of the most 
promising active materials because of its high theo-
retical capacity (1,675 mAh g−1), low cost and natural 
abundance. Li–S batteries were first conceptualized94 by 
Mallory P. R. & Co in the 1960s and electrochemically 
demonstrated by Rauh et al.95 in the 1970s but were later 
abandoned. Intensive research and development was 
recently renewed because of the increasing demand 
for high-energy-density power sources96–99. Indeed, fol-
lowing the initial commercial effort by Poly Plus, Sion 
Power Corporation has launched commercial Li–S prod-
ucts targeting unmanned vehicle systems and military 
communication applications. Remarkably, the problem 
of polysulfide dissolution into most electrolytes, which 
leads to a shuttling process involving the Li-metal anode, 
has been largely addressed using two approaches.

The first approach is to passivate the Li-metal anode 
using electrolyte solutions containing active agents, such 
as lithium nitrate (LiNO3), which react on the Li-metal 
anode to form a film on the surface that blocks facile 
electron transfer97. The second approach is to use smart 
composite electrode structures in which elemental sul-
fur is encapsulated by conductive porous materials and 
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nanoassemblies100 (structure 1 in FIG. 5). Effective sul-
fur–carbon cathodes have been demonstrated in which 
sulfur is encapsulated in activated carbon fibres (struc-
ture 2 in FIG. 5)101. These two approaches also resolve the 
issue of the poor electronic conductivity (~10−30 S cm−1) 
of sulfur. The incorporation of metal oxides102 and nitro-
gen doping103 in carbon backbones provide additional 
help for suppressing polysulfide dissolution because 
they have atomic configurations that enable a strong 
binding affinity to lithium polysulfides. In addition to 
simple encapsulating structures, polysulfide dissolution 
can be circumvented using chemical approaches; sul-
fur can exist in the form of short linear chains when 
confined in small pores104 (structure 3 in FIG. 5), or con-
jugated to polymer backbones105 or organic moieties106 
(structure 4 in FIG. 5). Soluble long-chain polysulfides 
can also be avoided by using solid107–111 or solid-like112–115  
electrolytes (structure 5 in FIG. 5), because the formation 
of the long-chain polysulfides is accompanied by the 
dissolution of S8 at the solid/liquid biphasic interface116, 
which is absent in solid electrolytes. The disappearance 

of the high-voltage plateau near 2.4 V in structures 
3–5 in FIG. 5 is another indication of the elimination of  
soluble long-chain polysulfides.

In addition to the structures described above, great 
interest lies in encapsulating sulfur at high content 
(>60 wt%) in activated carbons possessing wide pores 
to form an SEI-type protecting film on the surface of the 
composite sulfur–carbon cathodes117,118, as is schemati-
cally shown in structure 6 in FIG. 5. Using this approach, 
all redox reactions of the sulfur cathodes take place in a 
quasi-solid manner confined in the composite structure. 
The detrimental shuttle mechanism is thereby avoided, 
and it is possible to even use electrophilic carbonate 
solutions.

The energy density of Li–S cells should be carefully 
assessed, because their volumetric energy density is often 
neglected to emphasize the superior gravimetric capacity 
of sulfur. When free-standing carbon nanotube–sulfur 
electrodes119 (with a sulfur content of 54 wt%) are used as 
prototypes and the excess Li amount in the anodes is var-
ied from 0% to 100% in terms of the capacity, the energy 
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density ranges from 283 to 314 Wh l−1 (Supplementary 
information S9 (table)), which, surprisingly, is 
even smaller than that of LiCoO2–graphite LIBs 
(Supplementary information S1 (table)). These values, 
which were smaller than expected, are attributed to 
the low electrode density of most plausible composite 
sulfur electrodes, which leads to a relatively small stack 
number within a given volume. If we consider a case in 
which sulfur occupies 80 wt% of the electrode without 
a binder and void space, the theoretical energy density 
of the full cell can reach 867 Wh l−1 without an excess of 
Li; this reconfirms the importance of densifying com-
posite sulfur electrodes for practical use. This evalua-
tion demonstrates that for Li–S cells to be competitive, 
strategies to increase the sulfur-cathode density, such as 
roll pressing and high-content sulfur design, are cru-
cial. Thus, future research should be aimed at develop-
ing high-density electrode designs that simultaneously 
alleviate polysulfide dissolution. The reversibility of the 
Li-metal anode also has an important role, because it is 
desirable to minimize excess Li loading. Even with the 
aforementioned advanced approaches, using Li anodes 
is still likely to significantly limit the cycle lives of practi-
cal batteries. Alternative strategies for replacing Li metal 
with more reversible anodes, such as hard carbons or Si, 
would, in turn, sacrifice the energy density considerably. 
Hence, Li–S batteries may be better targeted to specific 
applications for which gravimetric-specific energy is 
critical and limited cyclability is tolerable. In addition to 
improving the energy density and cycling performance, 
certain processing issues for large-scale manufacturing 
need to be carefully addressed. In particular, ether-based 
solvents that are highly volatile could make it difficult 
to maintain a constant viscosity of the slurry through-
out processing. In this regard, less volatile solvents are 
preferable and are a good direction for future research.

Metal–oxygen battery systems. Secondary Li–O2 batter-
ies were first demonstrated by Abraham et al.120 in the 
1990s, and Zn–O2 batteries were developed121,122 earlier, 
in the 1970s. The use of O2 molecules from the air as 
an active material, instead of solid materials, promises 
a drastic improvement in the energy density, which 
has renewed interest in this direction. However, poor 
reversibility remains a problem in most metal–oxygen 
cells, and the charge–discharge efficiency in each cycle 
and long-term cyclability in most cells are far inferior 
to those of LIBs. Both Li–O2 and Zn–O2 systems share 
the same drawbacks: irreversible discharge products, 
electrolyte evaporation, and water and oxygen attack at 
the metal surface.

Li–O2 cells operate in both aqueous and non-aqueous 
electrolytes on the basis of two governing reactions5,120,123: 
2Li+ + 2e− + 1/2O2 + H2O → 2LiOH, 3.45 V (aqueous) 
and 2Li+ + 2e− + O2 → Li2O2, 2.96 V (non-aqueous). In 
the aqueous operation (FIG. 6a), the discharging process 
produces a soluble product, LiOH, which prevents the 
air cathode from clogging and reaching high overpo-
tentials. However, LiOH does not readily decompose 
during charging and can also precipitate5,123 above ~5 M, 
which impairs the energy density and cyclability. More 

importantly, the incompatibility of aqueous media with 
Li metal requires a surface coating5,124 of, for example, 
LISICON (LiM2(PO4)3, Li1 + x + yAlxTi2 − xSiyP3 − yO12)5,124–127. 
Moreover, the surface-coating layers do not usually pro-
vide long-term protection from Li-dendrite formation 
and pH variation, and eventually lead to a rate-perfor-
mance penalty123. Because of these fundamental and 
technical reasons, more attention has been directed to 
non-aqueous Li–O2 cells (FIG. 6b) in recent years.

A major challenge for non-aqueous Li–O2 cells 
lies in improving the reversibility in each cycle. To 
achieve this, two main approaches are applied: first, 
increasing the decomposition efficiency of the main 
discharge product123,128, Li2O2; and, second, avoiding 
unwanted side reactions5,129–131, which give rise to com-
pounds that reduce the reversibility. In the early stages 
of research using the first approach, the community 
concentrated on the development of cathode cata-
lysts with diverse metal128,132–135 and metal-oxide136–138 
nanostructures. However, identifying functional cat-
alysts remains a challenge, and their effects are easily 
concealed because the charging efficiency is largely 
affected by the preceding discharging products and 
conditions139–141; that is, the amount of side products, 
crystallinity and morphology of Li2O2, the degree of 
discharge and the current density.

In addition to cathode catalysts positioned inside the 
electrodes, a new concept of a redox mediator142,143 — a 
so‑called soluble catalyst — dissolved in the electrolyte 
was introduced to increase the Li2O2 decomposition effi-
ciency. By utilizing its soluble nature, a redox mediator 
undergoes charge transfer efficiently with conductive 
electrode surfaces and re‑transfers the charge from Li2O2, 
improving the electron transport from Li2O2 that would 
otherwise be hindered because of the low electronic  
conductivity of Li2O2.

Meanwhile, recent investigations5,129,140,144,145 have 
revealed that, regardless of the solvent used in the elec-
trolyte, most non-aqueous Li–O2 cells suffer from elec-
trolyte decomposition, which generates side products 
(for example, Li2CO3, HCO2Li and CH3CO2Li) with 
poor reversibility. Although the formation of side prod-
ucts occurs in all solvents, it is less severe in ether-based 
cells than in carbonate-based ones129,144. In a recent series 
of papers146–149, it was demonstrated that all relevant 
non-aqueous solvents are reactive towards basic and 
nucleophilic O2 reduction products (that is, superoxide 
and peroxide moieties) in the solution phase containing 
highly electrophilic Li ions. We note that all carbonaceous 
electrode materials can degrade by reacting with super-
oxide and peroxide moieties. As a result, the research 
focus has turned to minimizing side reactions, driving 
the community to use non-carbonaceous electrode mate-
rials (such as Au (REF. 132), TiC (REF. 150), Ti4O7 (REF. 151), 
Co3O4 (REF. 152), Mo2C (REF. 153) and RuO2 (REF. 154)) and 
carefully select the electrolyte solutions129,140,145,155.

Despite the long history of primary Zn–O2 batteries 
in hearing aids, navigation lights, remote communi-
cations and railway signal amplifiers, secondary Zn–
O2 batteries are still at the research stage. Compared 
with Li–O2 cells, secondary Zn–O2 cells deliver lower 
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gravimetric energy densities156, although decent cycla-
bility was recently reported121,157. The lower gravimetric 
energy densities originate from the smaller gravimetric 
capacity of Zn than that of Li, as well as the lower oper-
ating cell voltages (~1.65 V) due to the limited potential 
windows of aqueous electrolytes. Nonetheless, the use 
of Zn and aqueous electrolytes provides advantages of 
being low cost, environmentally benign and having high 
rate capability. More importantly, Zn–O2 batteries can 
offer promising volumetric energy densities. As shown 
in FIG. 6c, the governing reaction comprises a discharging 
reaction at the anode that involves OH− ions forming the 
soluble zincate (Zn(OH)4

2−) anion and the reduction of 
O2 to soluble OH− at the cathode121,156. Thus, in contrast 
to Li–O2 cells, the discharge products on the cathodes of 
Zn–O2 cells are mostly soluble, which makes the cathodes 
more reversible upon charging. The remaining challenges 
to meet commercial standards in terms of cyclability and 
rate capability are: to minimize ZnO passivation121,158,159 
on the Zn-anode surface and Zn-metal corrosion121,160–163; 
to develop effective oxygen evolution reaction (OER) 

and oxygen reduction reaction (ORR) catalysts157,164; and 
to prevent carbonate formation121,165 from the reaction 
between CO2 in air and KOH in the electrolyte.

The evaluation of the energy density of metal–oxygen 
batteries is not trivial even at the cell level, because the 
dimensions of the O2 gas inlet and catalyst layer are not 
commercially standardized, which leads to considerable 
variation in the entire cell volume. We assume that O2 
gas flows through channels along each current collec-
tor with a thickness of 50 μm. In the case of Li–O2 cells, 
when Super P powder is used as a main conductive com-
ponent in air cathodes, with reversible capacities of 1,000 
and 2,000 mAh g−1, the cathode porosity is 78% and 
the energy density is 440 and 581 Wh l−1, respectively 
(Supplementary information S10 (table)). Similarly, 
replacement of the Super P electrode with a Co3O4 cat-
alyst electrode increases the energy density slightly to 
536 and 659 Wh l−1, respectively (Supplementary infor-
mation S11 (table)). These values are smaller than the 
initial optimistic estimations and are ascribed to the 
volume occupation of the gas channels and the porosity 
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of the air cathodes. Despite the lower operating voltage, 
Zn–O2 batteries could offer more promising volumetric 
energy densities because the liquid-based reaction can 
reduce the cathode volume. Assuming a catalyst layer 
with a thickness of between 1 and 10 μm, the energy 
density ranges from 487 to 502 Wh l−1 (Supplementary 
information S12 (table)) when the reversible capacity of 
Zn is limited at 100 mAh g−1. The range rises dramati-
cally to 1,468–1,582 Wh l−1 (Supplementary information 
S13 (table)) once the reversible capacity of Zn is set to 
600 mAh g−1, indicating that the reversible capacity of 
the Zn anode is very critical. Irrespective of the main 
reactions, the volumes required for gas flow and for the 
accommodation of reaction products in the cathode  
have a decisive role in determining the volumetric 
energy density, demonstrating the importance of hav-
ing an air-cathode design that covers both the electrode 
layer and the gas channel. Owing to unsolved issues on 
both the material and cell levels, metal–oxygen batteries 
are unlikely to have a significant commercial impact in 
the near future.

Sodium-ion batteries. Because of the obvious advantages 
of the low cost and natural abundance of Na precursor 
materials, Na-ion batteries (SIBs) have been investi-
gated for grid-scale energy storage systems166. The size 
of the global rechargeable battery market is predicted 
to grow from about $10 billion in 2010 to over $30 bil-
lion in 2020, with significant growth of electric vehicles 
and energy storage systems. Hence, cost-effective post-
LIBs, such as SIBs and Mg batteries, could become more 
competitive in future markets. The monovalency of the 
carrier ions is another advantage, because a large portion 
of the knowledge that has been accumulated during the 
research of LIBs can be translated to SIBs. However, the 
larger size of the Na ion leads to considerable differences 
in the favoured crystal structure and intercalation behav-
iour. For the same host structure, the electrochemical 
performance of SIBs is usually inferior to that of LIBs, 
which imposes a hurdle for SIBs to be a competitive 
practical option166. A recent cost analysis highlighted this 
problem167; that is, the lower cost of the Na precursor 
materials is not sufficient to compensate for the infe-
rior energy densities of SIBs. Although Na precursors 
(for example, Na2CO3) are about 25–30 times cheaper 
than Li precursors (for example, Li2CO3), the cost of the 
carrier ion accounts for a only a small fraction of the 
overall material cost, and a greater cost reduction may 
be provided by the use of Al as the anode current collec-
tor167. Thus, both the energy densities and cost per Watt-
hour of SIBs need to be improved in parallel for them to 
become competitive on the global battery market.

For the cathode, in contrast to LIBs in which layered 
materials have been adopted for most applications, SIB 
research remains at the stage of identifying suitable 
materials. Over the past decade, both layered and poly-
anionic structures have been considered166. Na‑ion (de)
intercalation with layered materials was first reported by 
Delmas et al.168 in the 1980s. In general, layered materi-
als exhibit larger specific capacities but are less stable in 
long-term cycling owing to their structural instability 

upon Na‑ion extraction. In layered structures, in con-
trast to LIBs in which Li ions are stored in the octahe-
dral sites of an ‘octahedral (O)-type’ framework, the 
diffusion of Na ions is more stable when stored in the 
more spacious prismatic sites of a ‘prismatic (P)-type’ 
framework169. Moreover, most P‑type structures are syn-
thesized in Na‑deficient forms with a Na stoichiometric 
fraction of about 0.7, which is detrimental to the full-
cell energy density. Most layered SIB cathode materials 
exhibit operating voltages of up to 1.5 V lower than those 
of their layered LIB counterparts170, which is the main 
factor responsible for the lower energy densities of SIBs. 
Nevertheless, an exceptional case was recently reported 
for O3‑type NaCrO2, which exhibits a rate and cycling 
performance171 comparable to that of LIB materials with 
the same structure; thus, further exploration of layered 
materials is justified. In addition, it was demonstrated 
that the kinetics of NaNi0.5Mn0.5O2 cathodes are supe-
rior to those of the lithium counterpart (LiNi0.5Mn0.5O2), 
although the stability of NaNi0.5Mn0.5O2 during pro-
longed cycling is uncertain172. By contrast, several 
polyanionic structures show stable long-term cycling 
performance, indicative of robust phase transitions 
during repeated charge–discharge cycles. Although the 
heavy anions of the polyanionic hosts are compensated 
for by multiple Na ions, the specific capacities are lower 
than those of their layered counterparts. At present, both 
categories of materials are in competition and represent 
a trade-off between specific capacity and cyclability. The 
voltages and capacities of representative SIB cathodes are 
summarized in FIG. 7a.

Progress in the development of the anode is even 
slower. Graphite, the most widely used anode material 
in LIBs, is inactive towards Na ions. Currently, hard car-
bon with ~300 mAh g−1 in the range of 1.2–0.1 V versus 
Na/Na+ is the most commonly used material and serves 
as a reference for the study of other materials166. Na‑ion 
diffusion in hard carbon occurs along channels and cav-
ities with an irregular geometry, causing relatively poor 
rate performance. NaTi2(PO4)3 (2.15 V, 132 mAh g−1)173, 
Na2Ti3O7 (0.3 V, 200 mAh  g−1)174, Na2Ti6O13 (0.8 V, 
65 mAh g−1)175 and NaTiO2 (1.1 V, 152 mAh g−1)176, which 
all engage Ti3+/4+ as redox centres, are another intercala-
tion-based group of materials, but their specific capacities 
are relatively small. The material pool has been expanded 
to include those that can store Na ions on the basis of 
alloying and conversion mechanisms177. Sn (REFS 178,179), 
P (REFS 180–182), Sb (REFS 183–185), Ge (REFS 186,187), In 
(REF. 188) and their alloys189–191, together with oxides192–194, 
sulfides195,196 and phosphides197,198, are good examples. 
Similar to LIB materials operating via the same mecha-
nisms (that is, alloying and conversion), the main issue 
with these materials is the limited long-term cyclability 
of the electrodes owing to the volume expansion of the 
active phases and the resultant unstable interfaces199. Some 
organic materials200,201 with reasonably low operating volt-
ages have also been introduced as SIB anodes, but their 
feasibility under practical conditions is yet to be verified. 
Although it is probable that only small molecules are com-
petitive against other non-organic counterparts in terms 
of the specific capacity, factors such as their solubility in 
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electrolytes at various potentials and poor adhesion to the 
current collector might create a nontrivial hurdle to over-
come. The voltages and capacities of representative SIB 
anodes are summarized in FIG. 7b.

It has been reported166 that the energy densities of 
some pairs of intercalation cathode materials and hard 
carbons in SIBs could be as high as that of a manganese 
spinel–graphite pair in LIBs. However, it should be noted 
that the energy density of LIBs consisting of mostly lay-
ered cathode–graphite pairs is still considerably higher. 
Hence, SIBs may be competitive with LIBs in certain 
applications in which cost is an important factor: that 
is, when a lower cost per unit energy density of SIBs can 
be reached. To evaluate the energy density, we chose 
NaNi0.6Co0.05Mn0.35O2 (REF. 202) as the cathode and hard 
carbon as the anode (Supplementary information S14 
(table)). We excluded other Na‑deficient phases, even 
those with higher specific capacities, because it is unclear 
how Na deficiency can be compensated. Under the same 
pouch-cell conditions used to evaluate the other battery 
systems in this Review (FIG. 1c), the NaNi0.6Co0.05Mn0.35O2–
hard carbon cell offers a volumetric energy density of 
267 Wh l−1, which is only ~54% of that of LiCoO2–graph-
ite LIBs. One of the main reasons for the inferior energy 
density is the lower electrode densities of both electrodes 
compared with those of the LIBs, which results in a 
decrease in the number of stacks. If it is assumed that an 
anode with the same properties as graphite in LIBs can be 
developed, the energy density is expected to rise by ~45% 
to 388 Wh l−1 (Supplementary information S15 (table)), 
signifying the importance of finding high-capacity anode 
materials with high densities.

As SIBs mostly target large-scale energy storage sys-
tems, an energy-normalized cost analysis would be useful 
in assessing the value of each SIB. By taking the material 
prices available as of September 2015, we estimated the 
cost required for the pouch cell in FIG. 1c for both repre-
sentative LIB and SIB cells (Supplementary information 
S16 (table) and Supplementary information S17 (table)). 
These values are normalized by the total energies in 
Supplementary information S2,S14 (tables), resulting in 
the energy-normalized cost of $0.11 and $0.14 per Wh 
(Supplementary information S16,17 (tables)) for the LIB 
and SIB cells, respectively. These values imply that even 
if the raw materials of SIBs are cheaper, the energy densi-
ties of SIBs need to be improved considerably to compete 
with LIBs in cost-sensitive, large-scale applications.

Rechargeable magnesium batteries. Mg batteries can 
store two electrons per Mg ion, which is beneficial 
for achieving high volumetric energy density203,204. 
Mg batteries combine the advantages of having a high 
theoretical volumetric capacity of the Mg-metal anode 
(3,833 versus 2,046 mAh cm−3 for a Li-metal anode), an 
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abundance and low cost of Mg, and superior safety203,204. 
Nevertheless, since the first demonstration of reversi-
ble operation205 by the Gregory group in 1990 and our 
demonstration of more practical prototype cells206 in 
2000, the technology is still at the basic research stage 
and the electrochemical performance of most reported 
cells is far inferior to that of LIBs and even to that of SIB 
prototypes. With regard to the electrolyte, several fami-
lies of electrolyte solutions have recently been identified 
that enable a fully reversible reaction in Mg anodes with 
an anodic stability of >3 V versus the Mg anode204,207,208. 
In the cathodes, the greater electrostatic interaction 
between Mg2+ and host anions, compared with mon-
ovalent cations such as Na+ and Li+, slows the rate of 
Mg2+ diffusion, which impairs the overall electrochem-
ical performance203,204. Interestingly, the performance 
of some materials was misinterpreted because of side 
reactions of the current collectors209. Starting with the 
Chevrel phases (MgxMo6S8−nSen, n = 1 or 2; 0 < x < 2)203,206, 
the materials pool has been expanded to include vari-
ous oxides210–212, chalcogenides213,214, silicates215, 2D early 
transition-metal carbides and carbonitrides — MXenes, 
(Mn+1AXn: M = transition metal; A=Al, Ga, Si or Ge; 
X = C or N)216,217 — and the Prussian blue family218,219. 
The operating voltages as a function of specific capacity 
of representative materials are summarized in FIG. 7c.

With respect to the electrolyte, since the initial 
Grignard solution220 (RMgX in ethers, R = organic alkyl 
or aryl groups, X = Cl or Br) in the 1920s, successful 
research efforts have involved finding new compositions 
that allow reversible Mg deposition and dissolution on 
the Mg-anode surface and that simultaneously widen the 
stable voltage window. Mg organoborate moieties, such 
as Mg(BBu2Ph2)2 in THF, were the first non-Grignard 
electrolytes used205. This is considered as the first major 
breakthrough in electrolyte research for Mg batteries, 
although the stable voltage range of such organometal-
lic electrolytes is only up to ~1.9 V versus Mg/Mg2+. The 
second breakthrough in this area was the use of the mag-
nesium halo-alkyl aluminate complex (Mg(AlCl2BuEt)2) 
as the electrolyte206 in the first prototype cell with a stable 
voltage range of up to ~2.2 V. The stable potential win-
dow of organometallic salts continues to be increased: for 
example, all-phenyl complexes203 (R2Mg)n(AlCl3–nRʹn)m  
(PhMgCl and AlCl3), Grignard hexamethyldisilazane 
magnesium chloride (HMDS–MgCl)221, and tri(3,5‑di-
methylphenyl)borane (Mes3B) and PhMgCl in THF222 
have been reported to operate with a stable voltage of 
up to 3, 3.5 and 3.5 V, respectively. In the area of non- 
organometallic electrolytes, the community has tried to 
adopt less-volatile solvents, such as dimethylether (DME) 
and tetraglyme, and the magnesium aluminium chloride 
complex, MgCl2–AlCl3, in DME is the first good example 
in this direction208. Recently, MgTFSI2–MgCl2 in DME 
was also found to be promising223. Despite the good 
performance achieved with these organometallic and 
non-organometallic electrolytes, the corrosion of alumin-
ium and stainless steel current collectors owing to the 
presence of halide ions hinders their practical use. Hence, 
electrolytes based on halide-free salts have recently been 
pursued224–226. Remarkably, Mohtadi et al. reported Mg 

batteries with boron-based, halide-free electrolytes, 
such as Mg(BH4)2 in DME224 and MgB12H12 in THF225. 
This group subsequently reported226 Mg(CB11H12)2 in 
tetraglyme with good solubility and high voltage stabil-
ity of up to 3.8 V, and this discovery is worthy of being 
considered as the third breakthrough in the area of 
Mg‑battery electrolytes.

We also evaluated the energy densities of Mg batter-
ies (Supplementary information S18 (table)) when the 
Chevrel phase Mo3S4 with 122 mAh g−1 is used as a cath-
ode at an operating cell voltage of 1.1 V. The most critical 
parameter in this estimation is the excess amount of Mg 
metal. With 50% excess, the given stacked cell has an 
energy density of 790 Wh l−1 — about 1.6 times as high as 
that of graphite–LiCoO2 LIBs — justifying the continued 
research on the cathodes and electrolyte solutions for Mg 
batteries. When the excess amount of Mg metal changed 
to 0% and 100%, the energy density changed to 905 and 
695 Wh l−1, respectively.

Conclusions and outlook
The present IT and transportation technologies are 
more dependent on rechargeable batteries than at any 
time before, with a strong demand for enhanced energy 
density. In this Review, we have addressed materials and 
systems that are considered to be the most promising in 
this direction. However, when critically evaluated under 
a realistic battery platform, it appears that, in certain sys-
tems, the performance has been overestimated on the 
basis of the gravimetric capacities of the active materi-
als, clarifying the importance of a balanced view of the 
materials and cells. In practice, the high theoretical gram-
based capacities of active materials in most post-LIBs are 
not fully translated into volume-based cell energy densi-
ties, because a good portion of the capacity is lost owing 
to the low electrode densities and dead volume of the cell 
accessories. Hence, careful electrode optimization and 
cell design are essential for post-LIBs to take advantage of 
their material superiority and eventually fulfil their mis-
sion of surpassing state‑of‑the-art LIBs. In addition, once 
the lifetime of each post-LIB can be accurately specified, 
its end‑of‑life energy density can be evaluated, which, in 
turn, will allow the excess energy required in the initial 
cell (the ‘overdesign’) to be estimated.

Back to fundamentals with fresh ideas. In addition to 
the energy density, the issues related to the stable, long-
term operation of post-LIBs need to be fundamentally 
resolved. Ironically, even when emerging advanced bat-
teries malfunction, the problems begin from the same 
origins as in many historic batteries: irreversible phase 
transitions of active materials and/or unstable electrode/
electrolyte solution interfaces. These common features 
reconfirm that for the successful development of post-
LIBs and for possible commercialization, the stability of 
the electrodes and their interfaces over repeated charge–
discharge cycles must be the focus of future research 
efforts. Considering the level of difficulty experienced to 
date, the existing problems of post-LIBs may need to be 
re‑approached with fresh and creative remedies beyond 
the boundaries explored so far.
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